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When a series of measurements is performed with increasingly coarse (or increasingly fine) precision,
consecutive observations seem to be erratically distributed at first, and then organize themselves into cy-
cles and patterns. The patterns, which arise because of roundoff errors, are related to a notion in num-

ber theory, the so-called Farey sequence.

PACS number(s): 06.30.—k, 02.60.—x, 03.30.+p

I. INTRODUCTION

A strange phenomenon may be observed when con-
secutive measurements of dilating or contracting objects
are made. Due to the finite precision of the measure-
ments, roundoff errors arise, which first lead to seemingly
random observations, and then organize themselves into
a series of dome-shaped patterns. These patterns can be
explained in the context of a variant of circle maps,
which can, in turn, be understood by employing number
theory. We show that the patterns are closely associated
with the so-called Farey sequence, i.e., the succession of
rational numbers on the real line. The phenomenon has
been observed in such diverse areas as the flow of traffic
[1] (without actually being recognized), and production
levels in economics [2].

II. AMEASUREMENT PROBLEM IN RELATIVISTIC
DYNAMICS

We illustrate the topic by describing measurements of
an object traveling near the speed of light ¢. Consider a
measuring rod at rest, which is calibrated into G units of
length u. A second rod travels parallel to the measuring
rod at a velocity v. The length of the traveling rod is
measured by observing how many units on the measuring
rod make up the length of the traveling rod, and convert-
ing the observed length to the length L at rest. Hence,
the length is

u

L =Gy
14

, (1)

where y is the Lorentz factor for the transformation of
lengths, (1—v2/c2)%3 and Gy is the number of units.
Assume that the rod accelerates, and its length is mea-
sured at regular intervals in time [3]. If measurements
could be performed with infinite precision, the observed
length L would be identical at each measurement, regard-
less of the velocity with which the rod travels. However,
since measurements can only be performed with finite
precision, the number of units is rounded to the nearest
integer. Hence the length measured at time ¢,L,, be-
comes

L,=p(Gy,) 7,

, ()
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where p( ) designates the rounded number. To simplify
the following exposition, we assume that both rods at rest
are of unit length (hence u =1/G). We obtain

=p(Gy,)—— . 3)

Lt=p(G7/t) G’Vt

U
Y
Now, also to simplify exposition, assume acceleration
such that

v, =c

1 0.5

and Eq. (3) becomes

t
G- (5)

L,=p P

Using G =10°%, Fig. 1 depicts a series of measurements for
t=1,2,... . Ascould be expected, the higher the veloc-
ity, the less accurate the measurements become. But
another, more surprising, phenomenon, emerges: the
measured lengths exhibit seemingly random behavior at
first [Fig. 1(a)], while, for higher values of ¢, measure-
ments form patterns of domes [Fig. 1(b)].

III. ROUNDOFF ERRORS

In order to analyze this phenomenon, Eq. (5) is rewrit-
ten as

G

t

G
t

t
L=|p rARRE (6)

The inner expression,

t

» @)
t

€&=p

is the normalized roundoff error of the measurements,
and we do not restrict generality by limiting the analysis
to the series given by Eq. (7). In order to examine the oc-
currence of patterns in Fig. 1(b), we first compute the
step size between consecutive observations,

G G
t2+1 t

G
t+1

W, =€,17€= P +p

(8)
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The new series W, takes on rational values between + 1
and —1. Since after every few steps in one direction, the
observations restart at the other end, we have positive
steps interspersed with negative ones, and vice versa.
(For example, if W,=W,,,=W,,,=+0.3, then
W,,3=—0.7) Hence, the points of the series are ar-
ranged in two piecewise, monotonically decreasing
strands which are offset from one another by a vertical
distance of 1. (See Fig. 2.) While one strand decreases
from O to — 1, the other decreases from +1 to O on inter-
vals Iy, which reach from whenever G /(¢t*+1) is an in-
teger to the next such occurrence

K+1>

I,.= |t >K|, K=1,2,3,.... 9)
K t2+1¢

Hence, the approximate end points of each interval I
are

0.5
G

K

ty = (10)

For G equal to, say, 10° some of the end points are
t, =500, t;=577, t,=707, and, finally, t; =1000. Start-
ing with high values of K, the intervals are narrow at
first, and then increase in width, the last one ranging
from 1000 to infinity. The series W, is therefore approxi-
mately periodic in 1/12.

IV. CIRCLE MAPS
From Eq. (8) we have

€1—€+W(), (11)

which remotely resembles a circle map: the term W (t)
calls to mind the winding number [4]. However, since
W (t) changes with time, we will call it the “momentary
winding number at time ” (MWN). By definition W (z)
moves from one rational number to another.

Assume W (t*)=a/B, where a and B are relatively
prime. In principle, as long as W (t*+gq) equals a/B or
a/B*1(g=1,2,3,...), acycle of length B appears, since
€, +pg—€, (plus integer). However, since the MWN
changes continuously, we only have an approximate cycle
which persists for as long as the two strands of W (t) are
not too far removed from a/B and a/B=1, respectively.
Moreover, since the strands decrease, we have Aze, <0
(where A? denotes the second difference), and the juxtapo-
sition of approximate cycles creates the characteristic
domes. Their multiplicity is given by the MWN’s
denominator B. For example, for W(¢)=1 (which occurs
at t =1414, 816, 632, ...) we observe ‘“double” domes,
while domes of multiplicity three are observed for
W(t)=1 (which occurs at 1732, 866, 655, . ..), and for
W(t)=2 (at t =1224, 775, 612, . . .).

When W (t) passes from one rational number, a,/B;, to
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FIG. 2. Momentary winding numbers.
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another, «,/f,, the domes of multiplicity 3; melt into
domes of multiplicity 3,. If the interval Iy is too narrow,
however, as is the case for large values of K (low values of
t), the domes melt away before they can fully develop,
and the observations seem to be erratically distributed [as
in Fig. 1(a)].

The above implies that the sequencing of domes fol-
lows the sequencing of the rational numbers on the unit
interval, i.e., to the so-called Farey sequence [5]. Howev-
er, since not all rational numbers are visited by W(t),
some domes are left out. Other domes are omitted be-
cause the MWN’s denominator is too high: for a certain
MWN, say w*=a/B, W(t) must stay close to w* (or
w**£1) for at least 3 periods in order to complete one cy-
cle, and at least four or five cycles are needed to identify a
dome. If B is higher than about 10, it is unlikely that
W (t) stays close to w* (or w*=*1) for that long, since
W (t) continuously changes. Other than that, all the
properties of Faray sequences hold for the order in which
the domes appear. [For example, the multiplicity of the
largest dome in between two larger domes A and B is
equal to the sum of the multiplicities of domes A4 and B.
See Fig. 1(b).]

The width of the domes, that is, the time period for
which the approximate cycles persist, is determined by
two factors: (a) by the time it takes for a dome belonging
to the MWN «, /B, to melt into the dome belonging to
MWN a,/pB, (i.e., for a dome of multiplicity B, to melt
into a dome of multiplicity 3,). This time is related to the
distance between ‘““adjacent” rational numbers, where ad-
jacent is defined in the subset of rationals whose denomi-
nator is less than or equal to n (for the reason given
above, n is about 10). For this subset of rational numbers
the distance tends to be larger, the lower the denomina-

tor. (The reason is that the distance between two adja-
cent rational numbers, a /b and c/d, is 1/bd, which is
bounded from below by 1/bn [5]. This lower bound is
larger the smaller b.) (b) Since the strands of W (t) de-
crease at a decreasing rate [A2W (t) <0], small MWN’s
melt away faster than large ones. Hence the width of the
domes increases with ¢, and for low values of ¢ we obtain
the seemingly random behavior of Fig. 1(a).

V. SUMMARY AND CONCLUSIONS

The seemingly random observations which appear
when measurements of lengths are performed with in-
creasingly coarse (or increasingly fine) instruments, and
which then organize themselves into cycles and patterns,
are engendered by the roundoff errors in the measure-
ment process. We show that the series of errors is pro-
duced by a variant of the circle map, where the winding
number, which continually changes, is suitably redefined.
The patterns are related to the Farey sequence, a concept
in number theory which describes the sequencing of ra-
tional numbers on the real line.

In this paper the problem was motivated by relativistic
measurements, but it also appears in other circumstances,
and even in the social sciences. In economics, for exam-
ple, where the value of an asset is measured in dollars and
cents, increasing inflation causes the units of measure-
ments to become successively finer.
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